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ABSTRACT 

We will discuss a parametric study of the solution of the
Wigner-Poisson equations for resonant tunneling diodes.
These structures exhibit self-sustaining oscillations in certain
operating regimes.  We show numerically that the
phenomenon corresponds to a Hopf bifurcation, using the bias
across the device as a continuation parameter.  We will
describe the engineering consequences of our study and how it
is a significant advance from some previous work, which used
much coarser grids.  We use the LOCA package from Sandia
National Laboratory.  This package, and the underlying NOX
and Trilinos software, enable effective parallelization.  We
report on the scalability of our implementation.

Keywords: Wigner-Poisson Equations, Resonant Tunneling
Diode, Hopf Bifurcation, Continuation.

1.  INTRODUCTION

Semiconductor technology has developed to the point
where the next generation of electronic devices will operate at
the atomic level.  Since the device scale is so small, design
problems arise immediately.  Currently, we do not have the
technology to observe and collect all relevant data from such
small devices.  Furthermore, even if we had this capability, the
device physics are determined by quantum mechanics and not
by classical electromagnetism.  A fundamental result of
quantum mechanics is that the act of observing a quantum
system will have an impact on the results we obtain.  Thus,
physically measuring how a normal quantum system is
functioning would require an account of the effects of the
observer on the reported data.  To avoid this issue, engineers
and physicists researching these quantum devices are working
to develop an accurate model of these quantum systems from
first-principle physics.  One particular nanostructure we are
interested in is the resonant tunneling diode (RTD).

A RTD is created by taking a slab of semiconductor and
placing a second kind of semiconductor (one that has a larger

band-gap) into this semiconductor.  Since the second type has
a larger band-gap, this effective creates potential barriers
within the structure. Figure 1 is a diagram of an RTD.

Figure 1: Diagram of RTD

The second type of semiconductor is represented by the
dotted lines in the diagram.  The potential barriers are also
shown in the diagram and are represented by (B).  Between
the two barriers is a section of the original semiconductor.
This is the quantum well (W) that is contained between the
two barriers.  Far from the barriers, the original semiconductor
is doped (represented by the darker lines).  Doping is where
atoms that contain more (or less) electrons that the
semiconductor itself are embedded into the semiconductor to
create (or take away) extra electrons in the structure.  Between
the barriers and the doped regions are areas where the original
semiconductor exists.  These areas are called spacers (S).

Classically, if a particle runs into a potential barrier and
it does not have enough speed, it will be reflected back.  Since
quantum mechanics treats electrons as waves instead of
particles, an electron at any speed that encounters a barrier still
has some probability of passing through the barrier.  This
effect is known as “quantum tunneling” and is the basis of this
device.  If a voltage difference is applied across the device,
electrons will start to move along the device, tunnel through
the barriers, and reach the other side, thus creating a current.

Numerical simulations [1], [2] have shown that current
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oscillation can be expected for certain voltage differences, and
that these current oscillations have a high frequency in the
terahertz (THz) regime.  With these numerical simulations,
engineers and physicists are hoping to understand what
physical mechanism creates these intrinsic oscillations and
determine what physical parameters (i.e. doping profile,
barrier height and width, well width, etc.) are conducive to
sustaining and controlling these oscillations in hopes of
producing a viable high frequency power source.  This work is
attempt to create a faster and more accurate RTD simulator to
aid the engineers in these goals.

2.  MODEL DESCRIPTION

The model used to describe the electron transport in
these devices is the Wigner-Poisson equations [3].  These
equations consist of a nonlinear PDE that describes the time-
evolution of the distribution of the electrons in the device
coupled with Poisson’s equation which incorporates the
potential effects of the electrons into the model.  The first of
these equations can be given by

)()()()( fSfPfKfW
t

f
++==

∂

∂
        (1)

Here, f=f(x,k,t), is the distribution of the electrons.  It is a
function of the position of the electron, x, the momentum of
the electron, k, and time, t.  The position variable x ranges
from 0 to L, the length of the device, and the momentum
variable k ranges from -∞ to ∞.  The time-derivative of f is
comprised of three terms.  The first term, K(f), represents the
kinetic energy effects on the distribution and is given by
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Here, h is Planck’s constant and m* is the effective mass of
the electron.  The second term, P(f), is the nonlinear term in
the equation and is for the potential energy effects on the
distribution
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where T(x,z) is given by

€ 

T(x,z) = 4 [U(x + y) −U(x − y)]sin(2yz)dy
0

Lc / 2

∫
(4)
In this equation, U(x) is the electric potential as a function of
position, and Lc is the coherence length.  P(f) is nonlinear in f
since U(x) depends on f through Poisson’s equation.  The final
part of the time-derivative describes the scattering processes
that occur between the electrons
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Here, τ is the relaxation time, and f0(x,k) is the equilibrium

Wigner distribution.  This is the steady state solution to Eq. (1)
when there is no voltage difference across the device.  The
boundary conditions for f impose the incoming electron
distributions.  That is, at x=0 and for k > 0 (electrons with
positive momentum that are moving right) we have
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and at x=L and for k < 0 (electrons with negative momentum
that are moving left) we have
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kB is Boltzmann’s constant, T is the temperature, µ_0 is the
Fermi energy at x=0, and µ_L is the Fermi energy at x=L.

The electric potential U(x) is made up of two parts.  The
first part is from the electrostatic potential created by the
electrons in the device.  We will denote this part by u(x).  The
second part is from the potential barriers in the device created
from the heterojunction of the two different semiconductor
materials.  We will denote this part by ∆(x).  To get u(x), we
must solve Poisson’s equation
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q is the charge of the electron, ε is the dielectric constant, and
Nd(x) is the doping profile.  The boundary conditions for
Poisson’s equation are where the voltage difference across the
device is incorporated.  We have that
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where v ≥ 0 is the applied voltage.  Once we have solved for
u(x), we have U(x) = u(x) + ∆(x).

3.  DISCRETIZATION

To numerically solve for the distribution, we discretize
both the domain and equations using a finite difference
method.  For the x-domain, we use Nx grid points where xi = (i
- 1)*Δ_x, i = 1,2,…, Nx and Δ_x = L/( Nx – 1).  These grid
points are evenly spaced across [0, L].  For the k-domain, we
first truncate from -∞ to ∞ to –K M to KM, where KM is a
maximum momentum we consider.  We use Nk grid points
where kj = (2*j – N k – 1)*Δ_k/2, j = 1,2,…, Nk and Δ_k =
2*KM/Nk.  These grid points are evenly spaced across (-KM,
KM).  So numerically we want to compute an approximation to
the distribution at each grid point.  That is for each i = 1,2,…,
Nx and j = 1,2,…, Nk, calculate a fij such that fij ≈ f(xi, kj).

To approximate the spatial derivative term in Eq. (2), we
use a second-order upwind differencing scheme.  For the
integral terms in Eqs. (3) and (4), we use the midpoint rule in k
and the trapezoid rule in x for their approximations.  Finally,
for solving Poisson’s equation, we use a standard three-point
central differencing scheme.  This discretization converts the
continuous nonlinear PDE problem to a nonlinear ODE for the
solution for f at the grid points.



4.  CONTINUATION METHODS

We are interested in studying the steady-state Wigner
distribution, f, of the Wigner-Poisson equations, ∂f/∂t = W(f),
as a function of a system parameter, v, which is the applied
voltage difference across the RTD.  So, in the end, we are
trying to find the steady-state Wigner distribution, f(v), which
satisfies the nonlinear equation
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as we vary the parameter v.  To do this, we use continuation
methods.

Continuation methods map out solutions to nonlinear
equations that depend on a parameter as a function of this
parameter. Continuation algorithms generate a sequence of
parameters {vm} along with a corresponding sequence of
steady-state solutions {fm} that satisfy W(fm(vm)) = 0.  Since we
know that when v = 0, the steady-state solution is given by the
equilibrium Wigner distribution f0, then the first terms in these
sequences are v1 = 0 and f1 = f0.

We will now present three common continuation
methods.  A standard technique for solving nonlinear methods
are the zero-order continuation, first-order equations is
through Newton’s Method, and each continuation method uses
it to solve the nonlinear equation.  The three continuation
methods are zero-order continuation, first-order continuation,
and the pseudo-arclength continuation.

Assume we have just computed fm for some vm, and now
we want to compute the next steady-state solution fm+1 for a
vm+1 that is close to vm.  The zero-order continuation uses
Newton’s Method to solve W(fm+1(vm+1)) = 0 using fm as an
initial iterate.  This method is called zero-order since it does
not attempt to incorporate the effects of changing the
parameter vm to vm+1 in our initial iterate for fm+1.

The first-order continuation method considers such a
change by trying to approximate the sensitivity of the steady-
state solution f to the parameter v, given by ∂f/∂v , at the
previous steady-state solution fm.  To compute this value, we
differentiate W(f(v)) with respect to v to get
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So solving for ∂f/∂v involves solving a linear equation where
the coefficient matrix is the Jacobian of W with respect to f
evaluated at fm, denoted by W’(fm), and the right hand side is
∂W /∂v.  To evaluate ∂W /∂v at the previous steady-state
solution fm, we use a forward difference approximation
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where _ is some small perturbation.  Once we have the
approximation to ∂f/∂v, the initial iterate for Newton’s Method
to solve for fm+1 at vm+1 will be fm + ∂f/∂v*(vm+1 – vm).

The final continuation method, pseudo-arclength
continuation [4], is useful when continuing around turning
points.  Turning points are parts of the steady-state solution
branches where the branch turns around.  When a turning
point occurs, the Jacobian matrix becomes singular.  So
applying Newton’s Method is difficult as we approach the
turning point since the Jacobian matrix is becoming singular,

making the linear solves for the Newton steps harder.  Pseudo-
arclength continuation handles this problem by augmenting
the nonlinear equation W(f(v)) with an artificial parameter s
(the arclength parameter) and an additional arclength equation.
So the system we are solving now is
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where the first equation specifies that the solution is on the
steady-state solution branch, and the second equation specifies
the step to take in the parameter s.  Suppose we have the point
(vm, fm) on the solution curve and the next solution point to be
computed is (vm+1, fm+1).  For the next continuation step, the
arclength equation is given by
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where Δ_s is the step taken in the parameter s.  A geometric
interpretation of the (v,f) points that satisfy n(f(s), v(s), s) = 0
can be given.  Suppose a, b, c, and d are real numbers and (x0,
y0, z0) is a three-dimensional vector.  It is a result from
analytic geometry that the three-dimensional vectors (x, y, z)
that satisfy a(x – x0) + b(y – y0) + c(z – z0) – d = 0 lie in the
plane perpendicular to the three-dimensional vector (a, b, c) at
a distance away from (x0, y0, z0) which is determined by the
size of d .  Similarly, if (vm+1, f m+1) satisfy the arclength
equation, then the point will lie in the (v,f) plane perpendicular
to the gradient of (v(s), f(s)) at some distance away from (vm,
fm) which is determined by the size of ∆s.  An example of
tracing a one-dimensional system with a one-dimensional
parameter using pseudo-arclength continuation is given in
Figure 2 to further illustrate this point.

Figure 2: Arclength Continuation

5.  LOCA – Library of Continuation Algorithms

To implement these continuation methods into our RTD
simulator, we used LOCA (Library of Continuation
Algorithms), a software library developed at Sandia National
Laboratories [5].  This software library was created for large
scale bifurcation and stability analysis.  It is a part of Sandia’s
Trilinos project.  Trilinos is a collection of Sandia’s parallel
solver algorithms, and LOCA uses several other parts of



Trilinos in its continuation methods.  To solve the nonlinear
equations, LOCA relies on NOX, Trilinos nonlinear solver.  To
solve the linear equations created in the Newton iterations,
AztecOO, Trilinos’s preconditioned Krylov solver, is used.  To
determine the stability of the computed steady-state solutions,
LOCA determines the eigenvalues of the Jacobian of the
nonlinear equation W(f).  For a given steady-state solution f*
of the nonlinear ODE df/dt = W(f), it is a well-known result []
that the eigenvalues of the Jacobian of W at f * , W’(f*),
determines the stability of f*.  If all of the eigenvalues of
W’(f*) have negative real part, then f* is asymptotically stable.
If any of the eigenvalues of W’(f*) have positive real part, then
f* is unstable.  To check the eigenvalues of W’(f*), LOCA
utilizes Trilinos’s eigensolver Anasazi.

6.  PRECONDITIONER DEVELOPMENT

The nonlinear solver in the continuation method used for
our application was Newton-GMRES.  This is an inexact
Newton Method, where the linear solution for the Newton
steps are solved the Krylov iterative method GMRES [6].  To
reduce the number of iterations GMRES takes and therefore
reduce the computational burden of the simulation, a
preconditioner was developed.  When solving the linear
equation Ax = b, where A is a n by n matrix and x,b are n-
dimensional vectors, a preconditioner is another matrix M
multiplied into the equation (so now we solve MAx = M b)
where the new coefficient matrix MA is an easier matrix for an
iterative method to handle.  Usually, M is an approximate
inverse to A.  When solving the linear equations in Newton’s
Method, the coefficient matrix is always the Jacobian matrix.
If we look at Eq. (1), and ignore the last two terms, we get the
approximation that W(f )≈ K(f).  Since K defined in Eq. (2) is a
linear operator, we know ∂K/∂f = K.  So an approximation to
the Jacobian is W’(f) ≈ K.  Therefore, the preconditioner we
use is M = K-1.

7.  PARALLEL SIMULATOR

To parallelize our evaluation of W(f) , we take our
domain in ( x, k ) space and distribute among different
processors.  Here, we decided that each processor would get a
contiguous block of x-space and all of the corresponding k-
space that went with each. By splitting the data between the
processors this way, we ensure that the integrals in k-space can
be performed by each processor independently.  This splitting,
though, will require communication between the processors
that calculate the spatial derivative term in Eq. (2).  The
Poisson solve was not parallelized and is performed by the
main processor before everything else is calculated.  Once
U(x) is known, the main processor sends out a copy to rest of
the processors.  The processors then compute their part of
W(f), and return this to the main processor.

The parallel runs reported in this paper were performed
on a IBM Blade Center with Xeon 2.8 GHz processors at the
North Carolina State University’s High Performance and Grid
Processing.

8.  NUMERICAL RESULTS

The first thing we did with our simulator was to verify our
numerical simulation with others that were previously
published [1].  While these previously published used a very
coarse grid (Nx = 86, N k = 72), their computational time to
analyze the current output for v = 0 to v = 0.480 volts took a
few days.  Our improved simulator was able to match these
results while reducing the computational time to a few hours,

while not using any parallel processing. Figure 3 is a plot of
the current output versus applied voltage for the coarse grid.
The results for the finer grids do not match those in Figure 3,
and we are currently exploring the reasons for the difference,
which we believe are new physics. We will report on this in
future work.

Figure 3: Coarse mesh simulation

Since our simulator was directly computing the steady-state
solutions and the previous simulations were using time-
accurate methods to reach steady-state, we were able to
identify unstable steady-state branches while the time-accurate
simulation missed these.  These unstable steady-state branches
were able to explain the hysteretic effects found on this grid.
If the applied voltage is started at zero and is increased, the
current stays on the higher stable branch until the voltage is
0.318.  The current then drops to the lower stable branch and
continues on.  If the applied voltage is started at 0.48 volts and
is decreased, the current will stay on the lower stable branch
until the voltage is 0.25, and then jumps up to the higher stable
branch.

Table 1 shows that the preconditioner we use is scalable.
The number of GMRES iterations for each Newton step and
the number of Newton iterations for each continuation step are
essentially independent of the mesh.

Nx Nk
Avg. Newton Its. Per

Continuation Step
Avg. Krylov Its. Per

Newton Step

86 72 2.24 156

172 144 2.51 167

344 288 2.41 180

688 576 2.42 196

Table 1: Krylovs/Newton as mesh is refined

As we refine the grids, the number of Newton iterations per
continuation step and the number of Krylov iterations per
Newton iteration are remaining relatively constant which we
expect of a scalable preconditioner.

Table 2 reports on the parallel efficiency of the entire
application. The results show that roughly 40% of the code is
running in scalar mode.



# of
Procs.

Linear Solve
Time (sec.)

Speedup
Factor

Efficiency
(%)

1 431.21 --------- --------

2 263.69 1.64 82.0

4 115.71 3.73 93.3

8 75.23 5.73 71.6

  16      45.83      9.50     59.4

Table 2: Parallel efficiency

The grid used in this table is Nx = 688, N k = 576.  As we
increase the number of processors used for this job, the
efficiency stays above 70% up to 8 processors.

Table 3 presents scalability results of the parallel
simulator.

Nx Nk # of Procs.
Avg. W(f) Evaluation Time

(sec.)

172 144 1 0.1209

344 288 4 0.2814

688 576 16 0.5505

Table 3: Scalability

As we quadruple both the number of unknowns and the
processors, the function evaluation time should stay flat if the
simulator is scaling perfectly.  From the table, we see the
function evaluation time is doubling.  The scaling is consistent
with the speedup, telling us the code is 40% serial.

9.  CONCLUSIONS

The results from coupling the RTD simulator with LOCA look
very promising.  We are able to duplicate previously published
results at lower computational cost and able to tackle finer
grids that before were computationally infeasible. The results
from these finer grids seem to indicate that important physics
was not resolved in the grid which has been most widely used.
We are currently working on getting Fast Fourier Transforms
into the simulator to handle the two x convolutions in Eq. (4)
and the k convolution in Eq. (3) that are apart of evaluating the
potential energy term P(f).  This is the most computationally
intensive term, and we anticipate further speedup once the
FFTs are incorporated, and we hope they will also improve the
efficiency and scalability of our parallel simulator.
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